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Abstract
We study charge ordering (CO) in the extended Hubbard model with both
on-site and nearest-neighbour Coulomb repulsion (U and V , respectively)
within the coherent potential approximation. The phase boundary between
the homogeneous and charge-ordered phases for the square lattice is obtained
for different values of U . It is shown that at quarter-filling for all values of
U the CO exists only if the inter-site Coulomb repulsion V exceeds certain a
critical value which is of the order of the kinetic energy t . At finite temperature
a re-entrant transition is found in some region of V .

1. Introduction

The problem of charge ordering (CO) was already attracting the attention of physicists
at the end of the 1930s. In the low-density limit, as was first proposed by Wigner [1],
the electrons crystallize in form of a lattice in order to keep the Coulomb repulsion as
small as possible. Such a Wigner lattice is experimentally realized in a GaAs/AlGaAs
heterostructure [2]. The CO may also occur at higher electron concentration if the interaction
of electrons with spin degrees of freedom or with phonons drastically reduces the kinetic
energy [3]. Recently CO has been extensively observed in real materials at high densities:
hole ordering in rare-earth pnictides such as Yb4As3 [4] and CO in the unconventional spin–
Peierls material α′-NaV2O5 [5] and in colossal-magnetoresistance compounds, for example
R2−2x A1+2x Mn2O7 (R = La, Pr; A = Ca, Sr; x � 0.5) [6].

One of the simplest models of interacting electrons that allows for CO is the extended
Hubbard model (EHM). This model has been intensively studied both in low dimensions and
in the limit of infinite dimension, usually at half-or at quarter-filling. A variety of techniques,
such as Hartree–Fock approximation [7], perturbation theory [8], the dynamical mean-field
theory (DMFT) [9] and the slave boson approach [10], as well as numerical methods such as
quantum Monte Carlo simulation [11] and the Lanczos technique [12], have been employed.
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Obviously, each of these approaches is able to describe properly only one of the relevant limits
of the model and, despite the many publications devoted to the CO in solids, the physical
picture of the phenomenon is far from being clear.

Recently, a melting of the charge-ordered state on decreasing the temperature has been
found in Pr0.65(Ca0.7Sr0.3)0.35MnO3 [13] and in La2−2x Sr1+2x Mn2O7 (0.47 � x � 0.62)
[14, 15]. A re-entrant transition at quarter-filling has been obtained theoretically using the EHM
both with electron–phonon interaction [16] and without electron–phonon interaction [9, 12].
The present paper is devoted to a study of the boundary between the charge-ordered and
disordered phases for different regimes of the temperature T , the Coulomb interactions U, V
and the band filling n. A simple but physically meaningful approximation allowing us to solve
this problem is the coherent potential approximation (CPA). This self-consistent approximation
is recognized as the best single-site approximation for the spectral properties of disordered
systems. Originally, the alloy-analogue approximation was formulated as an approximation
scheme for the Hubbard model [17]. To solve the alloy problem the CPA is used as a second
step. The CPA was also applied to intermediate-valence and heavy-fermion systems [18]. In
the present work this approximation is used for the first time to treat the CO in the EHM.

2. Model and formalism

We consider the following Hamiltonian for the EHM:

H = t
∑
〈i j〉σ

(c+
iσ c jσ + c+

jσ ciσ ) + U
∑

i

ni↑ni↓ + V
∑
〈i j〉

ni n j , (1)

where ciσ (c+
iσ ) annihilates (creates) an electron with spin σ at site i , niσ = c+

iσ ciσ and
ni = ni↑ + ni↓. 〈i j〉 denotes nearest neighbours, t is the hopping parameter, U and V are
the on-site and inter-site Coulomb repulsion, respectively. We divide the hypercubic lattice
into two sublattices such that points on one sublattice have only points of the other sublattice
as nearest neighbours. The sublattice is denoted by subscript A or B: ciσ = aiσ (biσ ) if
i ∈ A (i ∈ B). Performing a mean-field decoupling of the V -term, we get

H =
∑

i∈A,σ

zV nBa+
iσ aiσ + U

∑
i∈A

ni↑ni↓ +
∑
j∈B,σ

zV nAb+
jσ b jσ

+ U
∑
j∈B

n j↑n j↓ + t
∑
〈i j〉σ

(a+
iσ b jσ + b+

jσ aiσ ) − 1
2 z NV nAnB, (2)

where z is the number of nearest neighbours, nA/B is the averaged electron occupation number
in the A/B sublattice, N is the number of sites in the lattice.

In the alloy-analogue approach the many-body Hamiltonian (2) is replaced by a one-
particle Hamiltonian with disorder which is of the form

H =
∑

i∈A,σ

EAσ a+
iσ aiσ +

∑
j∈B,σ

EBσ b+
jσ b jσ + t

∑
〈i j〉σ

(a+
iσ b jσ + b+

jσaiσ ) − 1
2 z NV nAnB, (3)

where

EA/B,σ =
{

zV nB/A with probability 1 − nA/B,−σ ,

zV nB/A + U with probability nA/B,−σ .
(4)

In the following we assume spin-independent expectation values in (4), i.e. we consider
only a non-magnetic solution: nα↑ = nα↓ = 1

2 nα (α = A, B). The Green function G
corresponding to the Hamiltonian (3) has to be averaged over all possible configurations of
the random potential which can be considered to be due to alloy constituents. The averaging
cannot be performed exactly. To solve the alloy problem the CPA is used. The averaged Green
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function Ḡ is obtained from an effective Hamiltonian containing a self-energy �A/B(ω) for
the A/B sublattice:

Hef f = �A(ω)
∑

i∈A,σ

a+
iσ aiσ + �B(ω)

∑
j∈B,σ

b+
jσ b jσ + t

∑
〈i j〉σ

(a+
iσ b jσ + b+

jσaiσ ). (5)

In momentum space the averaged Green functions ḠA/B(�k, ω) for the A/B sublattice are of the
form

ḠA(�k, ω) =
(

ω − �A(ω) − t2
�k

ω − �B(ω)

)−1

, (6)

ḠB(�k, ω) =
(

ω − �B(ω) − t2
�k

ω − �A(ω)

)−1

, (7)

where t�k is the Fourier transform of the hopping matrix element (the wavevector �k is for
sublattice A (or B)); �A/B(ω) are to be determined latter.

The density of states (DOS) for free electrons with the band dispersion t�k is replaced by
the semi-elliptical ρ0(ω) = 2

πW 2

√
W 2 − ω2 (we set W = 1 as the unit for the energy scale).

Note that this model DOS is often used as an additional approximation in combination with the
CPA. As was noted in [19], for the Bethe lattice with 3 � z � 6 this approximation is good one,
at least in a qualitative sense. The averaged Green functions ḠA/B(ω) for the A/B sublattice
then take the form

ḠA(ω) = 1

N

∑
�k

ḠA(�k, ω) = 2

W 2

{
ω − �B(ω) −

[
(ω − �B(ω))2 − ω − �B(ω)

ω − �A(ω)
W 2

]1/2}
.

(8)

And ḠB(ω) is obtained by making the replacement A ↔ B. A scattering matrix T is introduced
for each configuration via

G = Ḡ + ḠT Ḡ. (9)

The CPA demands that the scattering matrix vanishes on average: T̄ = 0. This yields an
expression for �A/B(ω) of the form

�A(ω) = ĒA − (zV nB − �A(ω))ḠA(ω)(zV nB + U − �A(ω)), (10)

where ĒA = zV nB + 1
2 UnA. Again �B(ω) and ĒB are obtained by making the replacement

A ↔ B.
For arbitrary size of the electron density n, we make the following ansatz:

nA/B = n ± x; ḠA/B(ω) = G(±x, ω).

Eliminating �A(ω),�B(ω) from (8) and (10) leads to an equation for G(±x, ω):

ω − G(−x, ω)

4
− 1

G(x, ω)
= zV (n − x) +

U

2
(n + x)

−
[

zV (n − x) − ω +
G(−x, ω)

4
+

1

G(x, ω)

]

×
[

zV (n − x) + U − ω +
G(−x, ω)

4
+

1

G(x, ω)

]
G(x, ω). (11)

Setting x = 0 in equation (11) and shifting the one-electron energy by zV n + U
2 , we reproduce

the CPA equation for the Green function obtained by Velicky et al [20].
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If µ is the chemical potential of electrons, then at the temperature T one has

nα = 2T

N

∑
�k,n

Ḡα(�k, iωn) = − 2

π

∫ +∞

−∞
dω f (ω) Im G(nα − n, ω), (12)

where ωn = (2n + 1)πT are the Matsubara frequencies and f (ω) = (1 + exp(ω − µ)/T )−1

is the Fermi function.
The pair of equations (12) must now be solved with the constraint nA + nB = 2n for nA,

nB and µ. For small enough V the solution of (12) is the homogeneous phase with nA = nB.
But if V is sufficiently large it may also be possible to find a CO solution for which nA �= nB.
One finds that the condition for the onset of CO is equivalent to nA = nB = n being a double
solution of (12). This condition is expressed as

n = − 2

π

∫ +∞

−∞
dω f (ω) Im G(0, ω), (13)

1 = − 2

π

∫ +∞

−∞
dω f (ω) Im G ′(0, ω), (14)

where G ′(0, ω) = ∂G(x,ω)

∂x

∣∣
x=0 and G(0, ω) is a solution of (11) when x = 0. The latter is a

cubic equation for G(0, ω) and the correct root must be identified from the physical condition
for yielding a non-negative DOS. It is also easy to obtain G ′(0, ω) from equation (11). So,
for fixed temperature T , on-site Coulomb repulsion U and band filling n, we have the closed
system of equations (13), (14) for the critical value V and the chemical potential µ within the
framework of the CPA.

3. Numerical results and discussion

We have solved equations (13), (14) numerically; the results may be summarized as follows.
In figure 1 we present the phase diagram as a function of n and V for different values of U
for the two-dimensional square lattice at zero temperature. The half-bandwidth W was taken
as the unit of energy (for the square lattice, z = 4 and W = 4t). Due to the electron–hole
symmetry we consider only 0 � n � 1. From figure 1 one can see that in the two regions
(n � 1, n � 1) the influences of U on the boundary between the charge-ordered and the
homogeneous disordered phase are different: away from half-filling (n < n∗ ≈ 0.67) the
on-site interaction U has little effect on the critical value Vc, while for n∗ < n � 1 the critical
value Vc strongly depends on U . In [15] Dho et al found that CO exists over a broad doping
range (0.44 � x � 0.8) in La2−2x Sr1+2x Mn2O7. It is worth noting that for large U in the
same filling region the CPA values of Vc are close to the minimum value (Vc has a minimum
at n∗ ≈ 0.67). Although the mechanism of the CO in the layered manganites is more complex
than that of the CO induced by a nearest-neighbour Coulomb repulsion, from the above result
we may speculate that the CPA is able to describe the CO boundary in this compound. In
addition, the advantage of the CPA is that by using this simple approach one can easily obtain
phase diagrams in the V –n plane for arbitrary U as well as in the U–V plane at arbitrary n. As
an illustration of our approach, in the following we consider the CO transition on the square
lattice at quarter-filling (n = 1/2). The inset in figure 2 shows the U–V phase diagram at
zero temperature. We compare CPA result to the ones obtained by other methods. At U = ∞
the critical values Vc = 0.195W and 0.172W obtained in [10] by the slave boson approach
with a constant DOS and the actual DOS ρ0(ω), respectively, are in good agreement with our
result Vc = 0.218W . At U = 2W , Vc = 0.66W was obtained in [9] for the EHM in infinite
dimension by the numerical renormalization group (NRG) method, while the CPA result for
our 2D lattice is Vc = 0.237W .
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0 0.2 0.4 0.6 0.8 1
n

0
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3

4

5

V

CO

Figure 1. The V –n phase diagram for the 2D EHM (W = 1, T = 0) for different values of U :
U = 0, 0.5, 1.5 and ∞ correspond to the dotted, long-dashed, dashed and solid curves, respectively.

0 1 2 3
U

0

0.4

0.8

V

0 0.2 0.4 0.6
V

0

0.2

0.4

0.6

T

CO

Figure 2. The T –V phase diagram at quarter-filling for several values of U : U = 1, 2 and 3
correspond to the dotted, solid and dashed curves, respectively. The inset shows the U–V phase
diagram for n = 1/2 and T = 0.

In [10] McKenzie et al argue that in the large-U limit at quarter-filling the charge-ordered
phase is destroyed below a critical non-zero value Vc, of the order of t , while we can now show
(see the inset of figure 2) that the critical value Vc is almost independent of U ; therefore Vc

is of the order of t for all values of U . Figure 2 shows the T –V phase diagram for different
values of U . For each value of U , re-entrant behaviour as a function of temperature is seen for
some region of V . For V in this range, the ground state is homogeneous but a charge-ordered
phase exists at intermediate temperature. Note that a re-entrant transition is apparently not
obtained by Hartree–Fock approximation in the EHM without electron–phonon interaction.
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Figure 3. The T –V phase diagram for U = 2 at various values of n: n = 0.3, 0.5, 0.65 and 0.8
correspond to the solid, long-dashed, dotted and dashed curves, respectively. The inset shows the
lattice occupancies nA (solid curve) and nB (dashed curve) as a function of V for U = ∞ and
T = 0.

Figure 3 shows the T –V phase diagram for U = 2 at different band fillings n. The re-entrant
behaviour is seen clearly for the values of n where Vc(T = 0) is larger (e.g. n = 0.3, 0.8),
while for values of n where Vc(T = 0) is small (e.g. n = 0.65), the re-entrant behaviour is not
seen.

In the inset in figure 3 we present the CPA result for the V -dependence of the sublattice
occupancies nA and nB and hence the charge order parameter (nA−nB) in the strong-correlation
limit U → ∞ at zero temperature. The transition is clearly continuous, in contrast to the result
for U = 2, T = 0 in [9] where the NRG method gives a first-order phase transition. Note that
in the strong-correlation limit U → ∞ from equation (11) one can find an analytic expression
for G(x, ω). Then equations (12) have to be solved self-consistently to find nA, nB and µ. For a
given set of these parameters the total energy of the system for various states can be calculated.
The state with the lowest energy is the true ground state and determines the spectrum. The CPA
result for the spectral functions for A and B for U = ∞, T = 0 are shown in figure 4. When
V < Vc ≈ 0.218, the spectral functions for A and B are identical and they are independent
of V by shifting all the one-electron energy levels and the chemical potential by 2V . For
V > Vc the spectral functions for A and B change and each spectrum splits into upper and
lower subbands. On increasing V , the weight of the lower subband in the A spectrum increases,
while that in the B spectrum decreases; the subbands in the spectrum become narrower due to
the reduced hopping of electrons in the charge-ordered phase. A CO gap opens and it is given

by � = 2
√

16V 2x2 + γ , where γ = 1
2 [(1 − n

2 ) −
√

(1 − nA
2 )(1 − nB

2 )]. In the limit of large

V , perfect charge order evolves: nA → 1, nB → 0. Therefore in this limit x → 1/2 and the
gap between two peaks � is given in CPA by 4V , as compared to 2V obtained by the DMFT
in [9].
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Figure 4. CPA results at quarter-filling for the spectral functions ρ(ω) for A and B (solid and
dashed curves, respectively) for U = ∞, T = 0 and several values of V . Below the critical value
Vc ≈ 0.218, the spectral functions for the two sublattices are equal.

4. Conclusions

In this paper we have applied the CPA to study CO in the EHM. Within this approximation
one can obtain the critical value Vc as a function of temperature T , on-site Coulomb repulsion
U and band filling n. To examine the CPA results we consider the CO transition on the 2D
square lattice at quarter-filling using a semi-elliptical DOS. It was shown that for all values
of U the charge-ordered phase is destroyed below a critical non-zero value Vc of the order of
t . Like previous results in [9, 12], our findings indicate a parameter region where the model
shows re-entrant behaviour. The re-entrant transition is also observed at other band fillings, as
was found experimentally for the layered manganites in [15]. In the strong-correlation limit
U → ∞ at zero temperature, the CPA gives a continuous transition.

Now the CPA is known to give good results for one-particle properties for a wide range
of systems. In studying the CO boundary phase in the EHM the CPA has the advantage over
DMFT of being analytically simple, and over the Hartree–Fock approximation (small U ) and
slave boson approach (U → ∞) of being able to describe the whole range of the on-site
interaction U . Of course, as for the alloy CPA, the imaginary part of the self-energy does not
vanish at the Fermi level at T = 0, so we do not obtain a true Fermi liquid and we only expect
our CPA to investigate CO in the EHM well at finite temperature.

The calculation presented here can also be applied to the lattice of higher dimensions, or
to the EHM in the presence of a weak magnetic field. To include magnetic phases and cluster
effects, one has to go beyond the usual alloy CPA. This is left to future work.
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